STERIC EFFECTS IN CARBENE CYCLOADDITIONS

Bernd Giese*, Woo Bung Lee and Carola Stiehl

Institut für Organische Chemie und Biochemie Technische Hochschule Darmstadt Petersenstraße 22, D-6100 Darmstadt, Germany

Summary: Steric effects in cycloadditions with alkenes prevent the occurence of a general linear free energy relationship between the reactivities of carbenes. Nevertheless, the isoselective temperature remains constant

In cycloaddition reactions of methylsubstituted alkenes $\underline{2}$ the selectivities of singlet carbenes $\underline{1}$ depend only on inductive and resonance effects of substituents X and Y^{1} . The absence of steric parameters indicates that the steric repulsion between methyl groups of the alkenes and substituents X and Y of the carbenes is negligible. Nevertheless, rate retarding effects have been observed in cycloaddition reactions of alkenes $\underline{3}^{2}$ and $\underline{4}^{3}$ which are substituted by bulkier alkyl groups. A general linear free energy relationship must, therefore, take steric effects into account. To answer the question whether a common corre lation for reactions of singlet carbenes exists, we have measured rel. rates of CCl₂ and CBr₂ cycloadditions with trisubstituted alkenes $\underline{5}$ using the competition technique⁴ (Table I).

CVV

$$ICXY + R^{1}R^{2}C = CR^{3}C^{4} \xrightarrow{\underline{k}} R^{1}R^{2}C - CR^{3}R^{4}$$

$$\underline{1} \qquad \underline{2} - \underline{5}$$

$$\underline{\underline{2}}: \mathbb{R}^{1}, \mathbb{R}^{2}, \mathbb{R}^{3}, \mathbb{R}^{4} = \mathbb{CH}_{3}, \mathbb{H} \qquad \underline{\underline{3}}: \mathbb{R}^{1} = a \| \| \| \|, \mathbb{R}^{2} = \mathbb{R}^{3} = \mathbb{R}^{4} = \mathbb{H}$$

$$\underline{\underline{4}}: \mathbb{R}^{1} = a \| \| \|, \mathbb{R}^{2} = \mathbb{CH}_{3}, \mathbb{R}^{3} = \mathbb{R}^{4} = \mathbb{H} \qquad \underline{5}: \mathbb{R}^{1} = a \| \| \|, \mathbb{R}^{2} = \mathbb{H}, \mathbb{R}^{3} = \mathbb{R}^{4} = \mathbb{CH}_{3}$$

Table I

Rel. rates \underline{k}_{CCl_2} and \underline{k}_{CBr_2} of carbenes CCl_2 and CBr_2 in cycloadditions with alkenes $\underline{3}-\underline{5}$ at $25^{\circ}C$.

Substituent	$rac{k}{CCl_2}$ Cycloadditions 2 with alkenes			$\frac{k}{CBr_2}$ Cycloadditions with alkenes		
of the alkenes						
R	<u>3</u> 2)	<u>4</u> ³⁾	<u>5</u>	<u>3</u> 2)	<u>4</u> ³⁾	5
₫:CH3	12	320	≡1000		500	≡1000
₽:c ² H ²	9.1	210		68	480	
⊆:i-C ₃ H ₇	4.4	77	280	30	160	350
₫:CH(C ₂ H ₅) ₂		29			60	
₽:C(CH ₃) ₃	0.47	14	110	2.5	38	185

A plot of the rel. rates (Table I) in a log $\underline{k}_{CBr_2}/\log \underline{k}_{CCl_2}$ -diagram shows that the reactivities of CBr_2 and CCl_2 cannot be correlated with each other. Instead of one straight line, each of the alkenes $\underline{3}$ - $\underline{5}$ gives a linear free energy relationship by itself (Figure I). The slopes vary from 1.1 via 0.86 to 0.73 for reactions of monoalkylated alkenes $\underline{3}$ via dialkylated alkenes $\underline{4}$ to trialkylated alkenes $\underline{5}$. This is in accord with the reactivity-selectivity principle⁵ because the decrease of the selectivity (log $\underline{k}_{CBr_2}/\underline{k}_{CCl_2}$) parallels the increase of the reactivity (log \underline{k}_{CBr_2} and log \underline{k}_{CCl_2}) of the alkenes (Table I).

Using only methylsubstituted alkenes (Skell-Moss line) the proportionality factor is 0.65¹⁾. It is, therefore, obvious that no common linear correlation exists between the reactivities of CBr_2 and CCl_2 if the number and the bulkiness of the alkyl groups at the alkenes are changed. This does not necessarily exclude a general relationship between selectivities log $(\underline{k}_{CXY}/\underline{k}_{CCl_2})$ and substituent parameters of carbenes and alkenes. But such a correlation must follow the condition of a constant isoselective temperature $T_{is}^{5)}$ which is $90\pm10^{\circ}C$ for the Skell-Moss equation⁶⁾. An extension to a relationship that also includes steric substituent effects is, therefore, possible only as long as T_{is} remains at $90\pm10^{\circ}C$. We have carried out experiments with alkene $4\underline{c}$ (R=i-C₃H₇) which deviates from the Skell-Moss relationship. Measurements in the competition system $4\underline{a}/4\underline{c}$ between -20 and $100^{\circ}C$ show that the selectivity lines of CF_2^{7} ,

 CCl_2 and CBr_2 cross also between 80 and $100^{\circ}C$ (Figure 2). With this observation of a constant isoselective temperature one requirement of a common correlation of the selectivities log ($\underline{k}_{CXY}/\underline{k}_{CCl_2}$) with polar and steric substituent effects is fulfilled. To elucidate the detailed relationship experiments with further carbenes will be performed.

Figure I: Correlations between the rel. reactivities of CBr_2 and CCl_2 in cycloadditions with alkenes 3-5.

Acknowledgement: This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Figure II: Temperature effect on the selectivity of carbones in the competition System 4a/4c.

References and Notes

- 1) R.A. Moss, Acc. Chem. Res. 13, 58 (1980).
- 2) R.A. Moss, M.A. Joyce and J.K. Huselton, Tetrahedron Lett. 1975, 4621.
- 3) B. Giese and C. Neumann, Tetrahedron Lett. 1982, 3557.
- 4) B. Giese, W.B. Lee and J. Meister, Liebigs Ann. Chem. 1980, 725.
- 5) B. Giese, Angew. Chem. 89, 162 (1977); Angew. Chem. Int. Ed. Engl. 16, 125 (1977).
- 6) B. Giese, W.B. Lee, Angew. Chem. <u>92</u>, 864 (1980); Angew. Chem. Int. Ed. Engl. <u>19</u>, 835 (1980).
- 7) The carbenes CF₂ were generated using the method of D.J. Burton and D.G. Nase, <u>J. Am. Chem.</u> <u>Soc. 95</u>, 8467 (1973). Detailed procedure: C.W. Jefford, J. Mareda, J.C.E. Gehret, T. Kabengele, W.D. Graham and U. Burger, <u>J. Am. Chem. Soc</u>. <u>89</u>, 2585 (1976).

(Received in Germany 1 December 1982)